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Abstract. The t–J model with constantt and J between any pair of sites is studied by
exploiting the symmetry of the Hamiltonian with respect to site permutations. For a given
number of electrons and a given total spin the exchange term simply yields an additive constant.
Therefore the real problem is to diagonalize the ‘t model’, or equivalently the infiniteU Hubbard
Hamiltonian. Using extensively the properties of the permutation group, we are able to find
explicitly both the energy eigenvalues and eigenstates, labelled according to spin quantum
numbers and Young diagrams. As a corollary we also obtain the degenerate ground states
of the finiteU Hubbard model with infinite-range hopping−t > 0.

1. Introduction

It is widely accepted that thet–J model captures the essential physics of high-temperature
superconductors, at least in the normal state [1]. The model is defined by the Hamiltonian

H = Ht +HJ (1)

where

Ht = −
∑
i,j,σ

tijP c
†
iσ cjσP (2)

describes the hopping between sitesi andj , and

HJ =
∑
i,j

Jij (Si · Sj − 1
4ninj ) (3)

is the exchange interaction. The operatorsc
†
iσ (ciσ ) create (destroy) electrons at sitei with

spinσ , P is a projection operator on the subspace with no doubly occupied sites,Si is the
spin operator andni the particle density restricted to the values 0 and 1.

Usually both the hopping termstij and exchange interactionsJij are chosen to be non-
zero if i and j are nearest neighbours and zero otherwise. Unfortunately, the model is
then very difficult to solve, and explicit analytical results have so far only been obtained
for a one-dimensional chain, and even then only for specific values of nearest-neighbour
couplings, namelyJ = 2t [2, 3] andJ = 0 [4].

In this paper we consider the rather artificial model with couplings of unlimited range,
i.e. tij = t , Jij = J for all sites i,j. Note that the exchange term is then simply given
by J [S(S + 1) − N2/4], whereN is the number of particles. Thus the real problem is
to solve the ‘t model’, which is equivalent to the infiniteU Hubbard model. Its ground
state has been derived previously [5]. A general solution has been conjectured by Li and
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Mattis [6], on the basis of spectra obtained by exact diagonalization. Very recently, Kirson
[7], exploiting the supersymmetry of the model, has calculated analytically both the energy
spectrum and the degeneracies. One of us (BB) has independently solved the model using
extensively the properties of the permutation group [8]. This method, described in detail
below, not only offers an alternative method for deriving the energy eigenvalues but also
yields all the eigenstates explicitly.

The paper is organized as follows. Section 2 summarizes the general properties of the
permutation group and its irreducible representations. The Young symmetrizers allow us
to decompose the Hilbert space of many-electron states into subspaces which transform
according to the irreducible representations of the permutation group. In section 3 these
symmetrized states are constructed explicitly and characterized by Young tableaux where the
numbers of sites are replaced by symbols indicating the occupancy of the sites, i.e. 0,↑,↓.
In section 4 the Hamiltonian is diagonalized for the subspaces belonging to the different
irreducible representations (or Young diagrams). In section 5 the technique is extended to
the case of the Hubbard model (with hopping of unlimited range). This case is in general
more complicated, but fort < 0 andU > 0 the exact ground state can be given. Certain
mathematical details are treated in two appendices.

2. The permutation symmetry and its implications

The Hilbert space of quantum statesH is generated by the Fock states

|φ〉 = c†i1↑ . . . c
†
iu↑c

†
j1↓ . . . c

†
jd↓|0〉 (4)

u andd being the number of↑ and↓ spins, respectively. We consider these two quantities
as arbitrary but fixed. We therefore specify the number of electronsN = u + d and the
z-component of the total spinSz = (u− d)/2. The number of empty sitesh (called holes)
is also conserved with valueh = L−N , as doubly occupied states have been excluded.

Since there is a constant hopping amplitude between every pair of sites, the Hamiltonian
is invariant with respect to every permutation of the lattice sites. The action of such a
permutationπ ∈ SL on a Fock state (4) is given by the unitary operatorρ(π) defined as
follows,

ρ(π)c
†
i1σ1
. . . c

†
iNσN
|0〉 := c†π(i1)σ1

. . . c
†
π(iN )σN

|0〉. (5)

Note that a transposition of two sites occupied by electrons with the same spin changes the
sign of the state whereas the transposition of empty states leaves it unchanged.

Our approach is based on the commutation relations

[Ht, ρ(π)] = 0, [S, ρ(π)] = 0 and [Ht,S] = 0 ∀π ∈ SL.

They allow us to label each energy level by its total spin quantum numberS and a Young
diagram representing the permutation symmetry. To formulate this more clearly, let us first
state some facts of the representation theory of the symmetric group developed at different
levels in [9–11].

There is a one-to-one correspondence between the irreducible representations ofSL
and the partitionsα of L (i.e. the listsα = (α1, α2, . . .) of integers with the constraints
α1+ α2+ · · · = L andα1 > α2 > · · · > 0).
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The partitions and the corresponding irreducible representations are usually visualized
in terms of aYoung diagramnoted [α].

[α] =
· · · · · · α1 boxes
· · · α2 boxes
...

...

We enumerate the boxes of the diagram column by column from top to bottom to obtain a
Young tableautα. For example, here is the tableau of the diagram [3, 2, 12]:

t (3,2,1
2) =

1 5 7
2 6
3
4

This tableau defines by its rows the dissection of{1, . . . ,7} into subsets{1, 5, 7}, {2, 6},
{3} and {4}, while it defines by its columns the dissection of{1, . . . ,7} into subsets
{1, 2, 3, 4}, {5, 6} and {7}. Correspondingly we associate with the rows oft (3,2,1

2) the
subgroupR(3,2,1

2) = S{1,5,7} × S{2,6} of SL, called horizontal group or group of the row
permutations, while we obtain from the columns the subgroupC(3,2,1

2) = S{1,2,3,4} × S{5,6}
of SL, called vertical group or group of the column permutations. The generalization to
arbitrary tableaux is obvious.

We can now define the row symmetrizerRα := ∑
π∈Rα ρ(π) as well as the column

antisymmetrizerCα :=∑π∈Cα sign(π)ρ(π). Finally the Young symmetrizer is given by the
product of the two:eα := CαRα. The Young symmetrizers provide our main working tool
for finding the eigenstates of the model. The following results of the theory are crucial [9].

Proposition 1.If |φ〉 is an arbitrary element ofH theneα|φ〉, if not null, transforms under
SL according to the irreducible representaton [α].

Proposition 2.For a given Young symmetrizereα the set of symmetrized wavefunctions
eα|φ〉, |φ〉 being of the form (4), spans a subspaceeαH with a dimension equal to the
numbernα of components [α] contained inρ.

Let |9i〉, i = 1, . . . , nα be an orthonormal basis ofeαH, then the space spanned by the
vectorsρ(π)|9i〉, π ∈ SL (i fixed) is a representation space for the representation [α] and
one obtainsnα mutually orthogonal representation spaces according to thenα basis vectors.

The problem of diagonalizingHt andS2 in H is therefore completely solved once we
have diagonalized it in each of the subspaceseαH. As a final remark let us state that one
also has the choice of interchanging the two factors in the definition ofeα in order to obtain
ẽα = RαCα. Propositions 1 and 2 are true forẽα as well as foreα and we are free to work
with either of them.

3. Construction of symmetrized states

We will now apply the Young symmetrizer of a given tableau to the different Fock states
in order to obtain symmetrized wavefunctionseα|φ〉. Such a state is best represented
graphically in terms of the corresponding tableau, where we replace the numberi ∈
{1, . . . , L} of each box by the occupancy↑, ↓ or 0 (empty) of the lattice sitei in |φ〉.
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For example in a system ofL = 7 sites with two up and two down spins the tableau
t (3,2,1

2) yields the following symmetrized wavefunctions:

0 ↑ ↓
0 ↓
0
↑

= e(3,2,12)c
†
4↑c
†
5↑c
†
6↓c
†
7↓|0〉

0 0 0
↑ ↑
↓
↓

= e(3,2,12)c
†
2↑c
†
6↑c
†
3↓c
†
4↓|0〉

...

(6)

The question is now: how many (and which) of the7!
2!·2!·3! = 210 states given above are

linearly independent?
Indeed, there is a way to answer this question without performing explicit calculations.

First, according to the definition ofeα, for two configurations wich differ only by a row
permutation the results of the symmetrization are identical (|φ〉 = ρ(π)|φ′〉, π ∈ Rα H⇒
eα|φ〉 = eα|φ′〉). This implies thateα|φ〉 is zero whenever two equally oriented spins are in
the same row of the corresponding tableau, as in the second row of (6). This observation
can be converted into a graphical rule that eliminates vanishing or linearly dependent states:
choose an order for the three symbols↑,↓, 0 e.g. 0<↑<↓ and only take into account the
graphs whose rows are filled in non-decreasing order; in addition make sure that there are
no repeated↑ or ↓ symbols in the rows. If we had worked with̃eα instead ofeα, we would
find another rule, which this time involves the columns of a tableau instead of the rows and
the holes instead of the spins; the rule states that there cannot be two holes in the same
column.

It then seems natural (although not immediately obvious) to merge these two rules into
a single statement.

Proposition 3.A basis of the subspaceeαH is given by the symmetrized wavefunctions
eα|φ〉 whose graphical representations obey the following conditions.

(i) The rows from left to right and the columns from top to bottom are filled in a
non-decreasing order with the symbols 0<↑<↓.

(ii) No two equally oriented spins are in the same row.
(iii) No two holes are in the same column.

As a corrollary, the multiplicity nα of the irreducible representation [α] in ρ

equals the number of admissible ways of filling the diagram [α] with the symbols
0, . . . ,0︸ ︷︷ ︸

h×
,↑, . . . ,↑︸ ︷︷ ︸

u×
,↓, . . . ,↓︸ ︷︷ ︸

d×

according to these conditions.

Although proposition 3 is simple, reflecting in a natural way the fermionic nature
of electrons and the bosonic nature of holes, it is not easy to prove it directly. It can
nevertheless be seen to be a special case of the Littlewood–Richardson rule, as explained
in appendix A.
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4. Spectrum and eigenstates of the model

A simple example of diagonalization using the Young symmetrizers is the single-particle
problem. ForN = 1 andL− 1 empty sites one can build two distinct tableaux:

0 · · · 0 ↑ 0 · · · 0
↑ .

The former corresponds to the non-degenerate eigenstatec+0↑|0〉 := ∑i c
+
i↑|0〉 with energy

E = −Lt and the latter to the eigenstate(c+2↑ − c+1↑)|0〉 which isL−1 fold degenerate with
energyE = 0.

A closer view of proposition 3 shows that the most general allowed diagram in the
many-particle problem is of the form [α] = [l, 2m−1, 1k−m] with the associated tableau:

tα =

l← →

1 k + 1
k +m
+1 · · · L

...
...

m k +m

m+ 1

...

k↓

↑

k ↓

↑

m

(7)

The widthl of the first row is restricted to the valuesL−N,L−N +1 andL−N +2,
whereas the allowedk andm values depend onSz (the numbers of↑ and↓ electrons).

Once the relevant irreducible representations are specified, one can diagonalizeHt within
the subspaceseαH. For this purpose it is extremely convenient thatHt can be expressed in
terms of permutation operators. One finds

Ht = −t
[∑
i<j

ρ((ij))+ S2+ f (L,N)
]

with f (L,N) = N2/4− (L−N)(L−N − 1)/2 and(ij) the transposition of sitesi andj .
The energy of an eigenstate is thus completely determined by its symmetry [α] and its

total spinS. With the aid of the algebraic lemma∑
i<j

ρ((ij))eα = ( # transpositions inRα − # transpositions inCα) eα (8)

(proved in appendix B), we compute the energy as a function ofS and [α] = [l, 2m−1, 1k−m].
In this way we obtain the complete spectrum of the HamiltonianHt ,

E(S, α) = −t
[(

l

2

)
−
(
k

2

)
−
(
m− 1

2

)
+
(
N
2 + S + 1

2

)
+
(
N
2 − S

2

)
−
(
L−N

2

)]
.

(9)

The spectrum is shown in figure 1 (2) for an even (odd) number of electrons 1< N <

L−1 (the caseN = L−1 with only one hole is treated separately). We have assumed that
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Figure 1. Spectrum for even number of electronsN .

t is positive. In the opposite case the spectrum is simply inverted. Apart from the energy
values we also indicate the total spinS. The column on the right-hand side of the figures
refers to the permutation symmetry.

Due to the large symmetry group every single energy level of this system will in general
be highly degenerate. The degeneracy of a level corresponding to [α] andS is (2S+1) times
the degreef α of the irreducible representation [α]. The latter can be calculated following
[10] or [11] and in our case amounts to

f α = L!

k!(m− 1)!(l − 2)!
· k −m+ 1

(k + l − 1)(m+ l − 2)
. (10)

We distinguish four parts, labelled by capital letters, that we will now discuss seperately.

4.1. A: l = L−N + 2 and B: l = L−N
Consider all the Young diagrams withl = L−N+2 (case A) orl = L−N (case B). In both
cases the multiplicity isnα = 1 if |Sz| 6 (k −m)/2 and 0 elsewhere. To see this, we look
at the tableaux in equations (11) and (12) which represent the only allowed filling according
to proposition 3. One has the liberty to invert some of the↑ spins in thek −m last boxes
of the first column, but not more than these. Hence the total spin isS = (k − m)/2. By
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Figure 2. Spectrum for odd number of electronsN .

varying k andm with l andL fixed one obtains every possible value forS in case B and
every value exept the completely magnetizedS = N/2 in case A.

The energies given by (9) turn out to beEA = −t (2L−N) (resp.EB = 0) independently
of the different values ofS, which leads to an accidental degeneracy. This means that there
are states of different symmetries and spin values with the same energy. This degeneracy
is lifted by the termHJ in the Hamiltonian (1).

Because the dimension ofeαH is one, the stateeα|φ〉 is an eigenstate ofHt . In the
case A (l = L − n + 2), it is convenient to usẽeα instead ofeα and to change the order
convention of proposition 3 into↑<↓< 0. We then obtain the eigenstates A:

↑ ↓ 0 · · · 0
↑ ↓
...
...

↑ ↓
↑
...
↑

= b†2k+2 . . . b
†
mk+mc

†
m+1↑ . . . c

†
k ↑
∑

i<j∈3 b
†
ij |0〉

(11)

whereb†ij := c†i↑c†j↓+c†j↑c†i↓ creates a singlet pair on the sitesi andj and3 is the sublattice
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formed by thel sites in the first row oftα. This is only one particular eigenstate of this
level. In fact, as already stated in [5], a general eigenstate of level A with total spinS is
of the form

Pψ
†
(N−2,S)c

+
0↑c
+
0↓|0〉

whereψ†(N−2,S) is an arbitrary wavefunction ofN − 2 electrons with spinS, c+0σ :=∑i c
+
iσ

creates an electron in the single-particle ground state andP projects out states with doubly
occupied sites.

An eigenstate of level B is given by

0 0 0 · · · 0
↑ ↓
...
...

↑ ↓
↑
...
↑

=∑π∈Sk
∑

τ∈Sm sign(πτ)b†π(2)τ (k+2) . . . b
†
π(m)τ(k+m)c

†
π(m+1)↑ . . . c

†
π(k)↑|0〉

(12)

Sk being the set of permutations of{1, . . . , k} (the first column) andSm the permutations of
{k+1, . . . , k+m} (second column). Again this is only one representative member of a large
subspace of degenerate eigenstates. The others can in principle be calculated through the
repeated application of permutation operators, the spin-lowering operatorS− := Sx − iSy

and linear combinations of them. Whether there is a more compact characterization of these
subspaces, as in case A, is an open question.

4.2. C and D:l = L−N + 1

The diagrams withl = L−N+1 appear with multiplicity 2 if|Sz| 6 (k−m−1)/2 and with
multiplicity 1 if |Sz| = (k − m + 1)/2. The diagonalization ofHt in eαH leads therefore
to two levels with total spinS = (k −m± 1)/2. eαH is spanned by the two symmetrized
wavefunctions:

0 0 · · · 0 ↑
↑ ↓
...
...

↑ ↓
↑
...
↑
↓

=: |91〉
0 0 · · · 0 ↓
↑ ↓
...
...

↑ ↓
↑
...
↑
↑

=: |92〉.

The odd combination of them

|92〉 − |91〉 =
∑
π∈Sk

∑
τ∈Sm

sign(πτ)b†π(2)τ (k+2) . . . b
†
π(m)τ(k+m)

×c†π(m+1)↑ . . . c
†
π(k−1)↑(b

†
π(k)τ(k+1) +

L∑
ν=k+m+1

b
†
π(k) ν)|0〉

with Sz = (k −m− 1)/2 is easily seen to be an eigenstate ofS2 with S = (k −m− 1)/2
because it is annulled by the raising operatorS+ = Sx+iSy . Hence it has to be an eigenstate



Infinite-ranget–J model 4233

of Ht as well. The states of this type give rise to part C of the spectrum with energies
EC = −t (L−N/2− 1− S).

The second eigenvector withS = (k−m+1)/2 must be orthogonal to|92〉− |ψ1〉 and
therefore is given by the sum

|92〉 + |91〉 =
∑
π∈Sk

∑
τ∈Sm

sign(πτ)b†π(2)τ (k+2) . . . b
†
π(m)τ(k+m)

×c†π(m+1)↑ . . . c
†
π(k−1)↑

(
d
†
π(k)π(1) + d†π(k)τ(k+1) +

L∑
ν=k+m+1

d
†
π(k)ν

)
|0〉

with d
†
ij := c

†
i↑c
†
j↓ − c†j↑c†i↓. These states correspond to part D of the spectrum and the

energies areED = −t (L−N/2+ S).

4.3. The special case of one single hole (N = L− 1)

For N = L − 1 figures 1 and 2 remain valid exept that level B now contains only the
ferromagnetic states withS = N/2. To see this, note that the symmetrized states of level
B correspond to a Young diagram withl = L−N . If only one hole is present, this means
that l = 1 and thus the only remaining diagram is [1L]. This diagram corresponds to the
ferromagnetic state

L∑
i=1

(−1)ic†1↑ . . . ĉ
†
i↑ . . . c

†
L↑|0〉.

The only degeneracy is in this case the trivial spin degeneracy 2S + 1.
It follows that forN = L − 1 and a positive hopping parameter(−t > 0) the ground

state is ferromagnetic. This result is not surprising since it is a consequence of two well
known theorems, both confirming a unique ferromagnetic ground state for this particular
case. The first is Tasaki’s extension of Nagaoka’s theorem [12] and the second is a theorem
proven by Mielke on flat band ferromagnetism [13, 14].

In this model, we find an example of Nagaoka ferromagnetism where the one-hole
condition is absolutely necessary, as we find always a complete spin degeneracy for
N < L− 1.

4.4. Permutation symmetry and supersymmetry

At this point it is worthwhile to connect the present approach with that of Kirson [7],
who exploited the dynamical supersymmetry of the model. His classification of many-
electron states in Fock spaceF is based on the irreducible representations [Y, S] of a certain
superalgebra. The representation space of [Y, S] contains four possible pairs of quantum
numbers, namely(Y, S), (Y + 1

2, S− 1
2), (Y − 1

2, S− 1
2) and(Y, S−1), whereY = L− 1

2N

andS is the total spin. We can identify the representation space of [Y, S] with eαF , where
[α] = [l, 2m−1, 1k−m] is related toY andS by k = L − Y + S, m = L − Y − S + 1 and
l = −L+ 2Y + 1.

For a givenα there are (in general) four classes of symmetrized states in Fock space.
These correspond to parts A–D of the spectrum with differing numbers of particles (N and
N ± 1), and can be identified with the four pairs of quantum numbers in [Y, S]:

A ⇔ (Y − 1
2, S − 1

2) B⇔ (Y + 1
2, S − 1

2) C⇔ (Y, S−1) D⇔ (Y, S).



4234 B Binz et al

5. Ground states of the finiteU Hubbard model with infinite range hopping in the
case−t > 0

The method developed in the previous sections can be generalized for other models which
are invariant under permutations of the lattice sites. For instance the Hubbard model with
infinite-range hopping,

HHubb= H0+HU
H0 = −t

∑
i,j,σ

c
†
iσ cjσ

HU = U
∑
i

ni↑ni↓

can in principle be treated in the same way. This model has been considered by several
autors [14, 15] but a general solution is still lacking. The most important new feature is
the appearance of doubly occupied sites. Proposition 3 has to be modified in a way so as
to treat these sites as well. The procedure is the following.

(i) Compute the admissible tableaux (the basis states ofeαH) without double occupation
as explained in section 3 or appendix A.

(ii) Replace a pair↑,↓ of symbols by↑↓, 0 and compute the symmetrized states with
exactly one double occupation. The new symbol↑↓ has to be included in the ordering
convention, e.g. 0<↑<↓<↑↓.

(iii) Replace another two symbols↑,↓ by ↑↓, 0 and continue, until there is no pair
↑,↓ left. In proposition 3, the symbols↑↓ are treated like the holes, i.e. they must not be
repeated within the same column.

A model which includes doubly occupied sites is much more difficult to solve than the
model considered in this paper. Nevertheless there is a particular class of diagrams where
these complications do not matter.

Consider a diagram of the form (7) where the numberl of boxes in the first row equals
L − N . In the tableaux of this kind, there is no way to produce a doubly occupied state
without violating the rules, because there is no room for an additional hole. The only
symmetrized states according to such a diagram are therefore the states B, eigenstates of
Ht , which contain no double occupation. We conclude that every eigenstate ofHt belonging
to case B is at the same time an eigenstate of the Hubbard Hamiltonian with the unchanged
energyEB = 0.

Since in the case−t > 0 andU > 0 we find 〈ψ |H0|ψ〉 > 0 and〈ψ |HU |ψ〉 > 0 for
every state|ψ〉, the states B are even the (only) ground states ofHHubb. It is remarkable
that the termHJ splits the accidental degeneracy of level B, while this degeneracy remains
exact in the Hubbard model for every positive value ofU . This shows that thet–J model
does not capture correctly the behaviour of the Hubbard model, not even in the asymptotic
regionU >> |t |. (In fact, a systematic largeU expansion of the Hubbard model yields, in
addition to the exchange term, another contribution, the so-called pair-hopping term. See
e.g. [16].)

6. Conclusion

We have shown that the permutation symmetry of thet–J model with infinite-range hopping
allows us to derive explicitly the energy spectrum, the eigenfunctions and their quantum
numbers. The model is admittedly rather unphysical due to the complete lattice connectivity
which leads to unusually high level degeneracies. Nevertheless the many-body spectrum
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has a very rich structure, and therefore the model deserves to be added to the few non-trivial
cases of exactly solvable strongly correlated fermion systems. Our results for the spectrum
and the degeneracies agree with those derived on the basis of a dynamical supersymmetry
[7], but in addition we have also been able to obtain all the eigenstates. Furthermore, we
have found an exact correspondence between the two approaches.
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Appendix A. The Littlewood–Richardson rule and proof of proposition 3

Sometimes a representation of a groupG is completely determined by a representation
of a subgroup ofG. To formulate this properly, we refer to the concept of induced
representations.

Proposition A.1.Given a subgroupH of a finite groupG and a representationσ of H ,
there always exists a representationρ of G into a vector spaceV and a subrepresentation
σ̃ of ρ|H into a subspaceW of V such thatσ̃ is equivalent toσ and

V =
⊕
γ∈G/H

Wγ

whereG/H is the set of left cosets ofH in G andWγ = ρ(s)W for an arbitrarys ∈ γ .

In this situation,ρ is (up to an equivalency) uniquely determined byσ and is called the
induction ofσ into G.

Let [α] be an irreducible representation ofSn and [β] an irreducible representation ofSm,
then the tensor product [α] ⊗ [β] yields an irreducible representation ofSn × Sm. Sn × Sm
can be identified in a natural way with a subgroup ofSn+m, if Sn acts on the elements
{1, 2, . . . , n} andSm acts on{n+ 1, n+ 2, . . . , n+m}. The outer product [α][β] is defined
as the induction of [α]⊗ [β] into Sn+m and is in general a reducible representation ofSn+m.
This multiplication is associative, commutative and obeys a distributive law together with
the direct sum⊕.

The representationρ defined in equation (5) is an outer product:

ρ = [h][1u][1d ].

To see this, consider one particular Fock state|φ〉 of the form (4). The subgroup ofSL
that leaves|φ〉 invariant (up to a sign) is isomorphic toSh× Su× Sd . The one-dimensional
subspaceW of H generated by|φ〉 therefore carries the representationσ = [h]⊗ [1u]⊗ [1d ]
of Sh × Su × Sd < SL. All we have to verify is that the Hilbert space of the system (with
N andSz fixed) is the direct sum

H =
⊕

γ∈SL/Sh×Su×Sd
ρ(πγ )W

whereπγ ∈ γ is a representative member of the left cosetγ .
The Littlewood–Richardson rule describes a graphical way to generate the irreducible

constituents of an arbitrary product [α][β], but for our purpose it is sufficient to consider a
product of the form [α][1n].
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Proposition A.2.The diagrams [γ ] of the irreducible constituents of [α][1n] may be
calculated by addingn boxes to the diagram [α] in all possible ways such that no two
added boxes appear in the same row.

Example.If [α] = [3, 12] and n = 2 we obtain

•
•

•

•

•
•

•

• •
•

Thus

[3, 12][12] = [4, 2, 1]⊕ [4, 13] ⊕ [3, 22] ⊕ [3, 2, 12] ⊕ [3, 14].

We can apply this process repeatedly in order to obtain the constituents ofρ =
[h][1u][1d ].

For example, if we wish to calculate [3][12][12], we first evaluate [3][12]:

0 0 0 1
1

0 0 0
1
1

This yields

[3][12] = [4, 1]⊕ [3, 12]

so that the constituents of [3][12][12] are obtained as follows:

0 0 0 1 2
1 2

0 0 0 1 2
1
2

0 0 0 1
1 2
2

0 0 0 1
1
2
2

0 0 0 2
1 2
1

0 0 0 2
1
1
2

0 0 0
1 2
1 2

0 0 0
1 2
1
2

0 0 0
1
1
2
2

Therefore

[3][12][12] = [5, 2]⊕ [5, 12] ⊕ 2[4, 2, 1]⊕ 2[4, 13] ⊕ [3, 22] ⊕ [3, 2, 12] ⊕ [3, 14].

This algorithm leads to the same diagrams as proposition 3, if we replace the numbers
1, (2) by the symbols↑, (↓) respectively.

Proposition 3 describes how to obtain a basis of the subspaceeαH for a given diagram
[α]. The procedure described above shows only that proposition 3 leads to the correct
dimension ofeαH. However, we have also seen that this dimension is never higher than
two. Thus it is easy to verify in every case that the corresponding stateseα|φ〉 are linearly
independent.
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Appendix B. Proof of (8)

We first note, that
∑

i<j ρ(ij) commutes with everyρ(π), π ∈ SL. Thus∑
i<j

ρ(ij)eα =
∑
i<j

Cαρ(ij)Rα.

ClearlyCαρ(ij)Rα = eα if (ij) ∈ Rα andCαρ(ij)Rα = −eα if (ij) ∈ Cα. In the remaining
case(ij) 6∈ Rα ∪ Cα, there exists one sitek 6= i, j , which is in the same column asi and
in the same row asj .

k j

i

As (ij) = (ik)(ij)(kj), we find

Cαρ(ij)Rα = Cαρ(ik)ρ(ij)ρ(kj)Rα = −Cαρ(ij)Rα
and therefore

Cαρ(ij)Rα = 0.

This proves equation (8).
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