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Abstract. The t—J model with constant and J between any pair of sites is studied by
exploiting the symmetry of the Hamiltonian with respect to site permutations. For a given
number of electrons and a given total spin the exchange term simply yields an additive constant.
Therefore the real problem is to diagonalize thenodel’, or equivalently the infinit&/ Hubbard
Hamiltonian. Using extensively the properties of the permutation group, we are able to find
explicitly both the energy eigenvalues and eigenstates, labelled according to spin quantum
numbers and Young diagrams. As a corollary we also obtain the degenerate ground states
of the finite U Hubbard model with infinite-range hoppingt > 0.

1. Introduction

It is widely accepted that the-J model captures the essential physics of high-temperature
superconductors, at least in the normal state [1]. The model is defined by the Hamiltonian

where
HIZ—ZII']'PC;[U_CJ'UP (2)
i,j.o
describes the hopping between sitesnd j, and
Hy =" 1;;(Si - S; — jnin;) ®)

LJ
is the exchange interaction. The operatd;;s(c,»a) create (destroy) electrons at sitgvith
spino, P is a projection operator on the subspace with no doubly occupied Sités the
spin operator and; the particle density restricted to the values 0 and 1.

Usually both the hopping terms and exchange interactionfs; are chosen to be non-
zero if i and j are nearest neighbours and zero otherwise. Unfortunately, the model is
then very difficult to solve, and explicit analytical results have so far only been obtained
for a one-dimensional chain, and even then only for specific values of nearest-neighbour
couplings, namely = 2¢ [2, 3] andJ = 0 [4].

In this paper we consider the rather artificial model with couplings of unlimited range,
ie.t;; =t, Ji; = J for all sites i,j. Note that the exchange term is then simply given
by J[S(S + 1) — N?/4], where N is the number of particles. Thus the real problem is
to solve the / model’, which is equivalent to the infinit¢’ Hubbard model. Its ground
state has been derived previously [5]. A general solution has been conjectured by Li and
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Mattis [6], on the basis of spectra obtained by exact diagonalization. Very recently, Kirson
[7], exploiting the supersymmetry of the model, has calculated analytically both the energy
spectrum and the degeneracies. One of us (BB) has independently solved the model using
extensively the properties of the permutation group [8]. This method, described in detalil
below, not only offers an alternative method for deriving the energy eigenvalues but also
yields all the eigenstates explicitly.

The paper is organized as follows. Section 2 summarizes the general properties of the
permutation group and its irreducible representations. The Young symmetrizers allow us
to decompose the Hilbert space of many-electron states into subspaces which transform
according to the irreducible representations of the permutation group. In section 3 these
symmetrized states are constructed explicitly and characterized by Young tableaux where the
numbers of sites are replaced by symbols indicating the occupancy of the sites}i.¢. O
In section 4 the Hamiltonian is diagonalized for the subspaces belonging to the different
irreducible representations (or Young diagrams). In section 5 the technique is extended to
the case of the Hubbard model (with hopping of unlimited range). This case is in general
more complicated, but for < 0 andU > 0 the exact ground state can be given. Certain
mathematical details are treated in two appendices.

2. The permutation symmetry and its implications

The Hilbert space of quantum stat&Sis generated by the Fock states

) = c}m . ciT“Tc;l¢ e c}dl|0) 4)

u andd being the number of and| spins, respectively. We consider these two quantities
as arbitrary but fixed. We therefore specify the number of electtdns u + d and the
z-component of the total spifi¢ = (u — d)/2. The number of empty sitds (called holes)
is also conserved with value= L — N, as doubly occupied states have been excluded.

Since there is a constant hopping amplitude between every pair of sites, the Hamiltonian
is invariant with respect to every permutation of the lattice sites. The action of such a
permutationr € S; on a Fock state (4) is given by the unitary operatdr) defined as
follows,

p(m)et ool o 10) = ¢l ek o 10). (5)

Note that a transposition of two sites occupied by electrons with the same spin changes the
sign of the state whereas the transposition of empty states leaves it unchanged.

Our approach is based on the commutation relations

[H, p(@)] =0, [S,p(x)]=0and [H,,S]=0 Vr e S;.

They allow us to label each energy level by its total spin quantum nuilzerd a Young
diagram representing the permutation symmetry. To formulate this more clearly, let us first
state some facts of the representation theory of the symmetric group developed at different
levels in [9-11].

There is a one-to-one correspondence between the irreducible representatifins of
and the partitionsy of L (i.e. the listse = (a1, a2, ...) of integers with the constraints
ar+oax+---=Landa; Zaz > --- = 0).
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The partitions and the corresponding irreducible representations are usually visualized
in terms of aYoung diagramnoted [].

...... l ] a; boxes
[e] = 1] oy boxes

We enumerate the boxes of the diagram column by column from top to bottom to obtain a
Young tableau®. For example, here is the tableau of the diagran2[3?]:

5[7]

l(3’ 2,1%)

NEANE

This tableau defines by its rows the dissection{tf..., 7} into subsetq1, 5, 7}, {2, 6},

{3} and {4}, while it defines by its columns the dissection f, ..., 7} into subsets
{1,2,3,4}, {5,6} and {7}. Correspondingly we associate with the rows:6f2%) the
subgroupR®2%) = S5 x Spe of S., called horizontal group or group of the row
permutations, while we obtain from the columns the subgr6#1) = S;1034 X Sis6

of S;, called vertical group or group of the column permutations. The generalization to
arbitrary tableaux is obvious.

We can now define the row symmetriz&* = ) __,. p(7) as well as the column
antisymmetrizeC® := ) __. Sign(w)p (). Finally the Young symmetrizer is given by the
product of the two:e* := C*R*. The Young symmetrizers provide our main working tool
for finding the eigenstates of the model. The following results of the theory are crucial [9].

Proposition 1.1f |¢) is an arbitrary element of{ thene®|¢), if not null, transforms under
S, according to the irreducible representatad. [

Proposition 2.For a given Young symmetrizer* the set of symmetrized wavefunctions
e*|¢p), |¢) being of the form (4), spans a subspacé{ with a dimension equal to the
numbern, of componentsd] contained inp.

Let|¥;), i =1,...,n, be an orthonormal basis ef H, then the space spanned by the
vectorsp(7)|¥;), m € S, (i fixed) is a representation space for the representatiparid
one obtains:, mutually orthogonal representation spaces according te tH®sis vectors.

The problem of diagonalizind?, and $2 in H is therefore completely solved once we
have diagonalized it in each of the subspac¥®. As a final remark let us state that one
also has the choice of interchanging the two factors in the definitieff of order to obtain
e* = RYC“. Propositions 1 and 2 are true fé# as well as fore* and we are free to work
with either of them.

3. Construction of symmetrized states

We will now apply the Young symmetrizer of a given tableau to the different Fock states
in order to obtain symmetrized wavefunctior$|¢). Such a state is best represented
graphically in terms of the corresponding tableau, where we replace the numéber

{1, ..., L} of each box by the occupanay, | or 0 (empty) of the lattice sitéin |¢).
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For example in a system df = 7 sites with two up and two down spins the tableau
1321 yields the following symmetrized wavefunctions:

ol 1] (3213 .1 & 1 1

8 1 =e>s C4TC5TCGLC7l|O)

1]

o[o]0] Lo (6)
1 = @2 cliehyel, 10)

The question is now: how many (and which) of tggi—g, = 210 states given above are
linearly independent?

Indeed, there is a way to answer this question without performing explicit calculations.
First, according to the definition af*, for two configurations wich differ only by a row
permutation the results of the symmetrization are identiggl £ p(7)|¢’), 7 € R* —
e*|p) = e*|¢")). This implies that®|¢) is zero whenever two equally oriented spins are in
the same row of the corresponding tableau, as in the second row of (6). This observation
can be converted into a graphical rule that eliminates vanishing or linearly dependent states:
choose an order for the three symbols|, 0 e.g. 0O<1 <] and only take into account the
graphs whose rows are filled in non-decreasing order; in addition make sure that there are
no repeated or | symbols in the rows. If we had worked wi# instead ofe*, we would
find another rule, which this time involves the columns of a tableau instead of the rows and
the holes instead of the spins; the rule states that there cannot be two holes in the same
column.

It then seems natural (although not immediately obvious) to merge these two rules into
a single statement.

Proposition 3.A basis of the subspacg®H is given by the symmetrized wavefunctions
¢“|¢) whose graphical representations obey the following conditions.

(i) The rows from left to right and the columns from top to bottom are filled in a
non-decreasing order with the symbols<@ <.

(ii) No two equally oriented spins are in the same row.

(iii) No two holes are in the same column.

As a corrollary, the multiplicity n, of the irreducible representationx][ in p
equals the number of admissible ways of filling the diagramp \ith the symbols
0,...,0,%,...,%,4,...,{ according to these conditions.

hx ux dx

Although proposition 3 is simple, reflecting in a natural way the fermionic nature
of electrons and the bosonic nature of holes, it is not easy to prove it directly. It can
nevertheless be seen to be a special case of the Littlewood—Richardson rule, as explained
in appendix A.
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4. Spectrum and eigenstates of the model

A simple example of diagonalization using the Young symmetrizers is the single-particle
problem. ForN = 1 andL — 1 empty sites one can build two distinct tableaux:

[o[---Jo[t]  [o]---]0].
T

The former corresponds to the non-degenerate eigenﬁgm =) ci+T|O) with energy

E = —Lt and the latter to the eigensta(tg*T - ch)|0> which is L — 1 fold degenerate with
energyE = 0.

A closer view of proposition 3 shows that the most general allowed diagram in the
many-particle problem is of the forna] = [/, 2”1, 1¥-"] with the associated tableau:

[

1 | «k+2 k::lm ce. L
m
1% =
k m k+m (7)
m+1
k

The width! of the first row is restricted to the valués— N, L — N+1 andL — N +2,
whereas the allowed andm values depend o8¢ (the numbers off and | electrons).

Once the relevant irreducible representations are specified, one can diagéhalitiein
the subspaces*H. For this purpose it is extremely convenient tliatcan be expressed in
terms of permutation operators. One finds

H, = —t[z p((j) + 8%+ f(L, N)]
i<j
with f(L, N) = N2/4— (L — N)(L — N —1)/2 and(ij) the transposition of sitesand ;.
The energy of an eigenstate is thus completely determined by its symrogtand its
total spinS. With the aid of the algebraic lemma
Zp((ij))e" = ( # transpositions iR® — # transpositions irC%) e (8)
i<j

(proved in appendix B), we compute the energy as a functighafd ] = [, 2771, 1F—].
In this way we obtain the complete spectrum of the Hamiltorfign

- [()-()- 5 ) (72 (23]

The spectrum is shown in figure 1 (2) for an even (odd) number of electren®V1<
L —1 (the caseV = L — 1 with only one hole is treated separately). We have assumed that
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i energy spin symmetry
=0+ B: $=0,1 ,g l=L-N
T t(L-N)
N =
L (LN) o+ /// K s=5%-1 m=1
] Elevels
+ C: \ $=0 m=-2-
T 2t I=L-N+1
N
-+ S=1 m =
/ [ t Z
1 - levels
<L T D: \ s-% m=
1 t(L-N)
I A . I=L-N+2
-t (2L-N) T A. $=0,1,., 7" 1 =L-N+

Figure 1. Spectrum for even number of electroNs

t is positive. In the opposite case the spectrum is simply inverted. Apart from the energy
values we also indicate the total spfn The column on the right-hand side of the figures
refers to the permutation symmetry.

Due to the large symmetry group every single energy level of this system will in general
be highly degenerate. The degeneracy of a level corresponding aod S is (25+1) times
the degreef® of the irreducible representation][ The latter can be calculated following
[10] or [11] and in our case amounts to

« L! k—m+1
TKHm -1 -2 k+l-Dm+I-2)

(10)

We distinguish four parts, labelled by capital letters, that we will now discuss seperately.

41. All=L—-N+2andB:/I=L—-N

Consider all the Young diagrams with= L — N +2 (case A) ol = L — N (case B). In both
cases the multiplicity i®, = 1 if |[S?| < (k —m)/2 and 0 elsewhere. To see this, we look

at the tableaux in equations (11) and (12) which represent the only allowed filling according
to proposition 3. One has the liberty to invert some of thepins in thek — m last boxes

of the first column, but not more than these. Hence the total spth=s(k — m)/2. By
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1 energy spin symmetry
e=o + B Sezizny LN
1 t(L-N)
t (L-N) + s=N_; m=1
N-1 / ] t 2 .
4 -Z—Ievels . .
. C- 1 " ON-1
] S§ = M = e
1 2t 2 2
5o +1 |=L-N+1
B =— m s =
I t 2 2
e (@Y ]S .
4L+ D: S== m=1
1 t(L-N)
. L3 N =L~
teeny+ A Sezigrmg 1 =LN42

Figure 2. Spectrum for odd number of electrons

varying k andm with [ and L fixed one obtains every possible value fin case B and
every value exept the completely magnetizee: N/2 in case A.

The energies given by (9) turn outto Bg = —¢(2L—N) (resp. Eg = 0) independently
of the different values of, which leads to an accidental degeneracy. This means that there
are states of different symmetries and spin values with the same energy. This degeneracy
is lifted by the termH; in the Hamiltonian (1).

Because the dimension efH is one, the state®|¢) is an eigenstate off,. In the
case A (=L —n+ 2), it is convenient to usé* instead ofe* and to change the order
convention of proposition 3 intg <| < 0. We then obtain the eigenstates A:

Ol[ol

gt T T T T
=byiiz2---by, ktmCm+1p - - C/LT Zi<jeA b;j|0)

(11)

wherebfj = c%cj-l +CJTTCL creates a singlet pair on the siteand j and A is the sublattice
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formed by thel sites in the first row of®. This is only one particular eigenstate of this
level. In fact, as already stated in [5], a general eigenstate of level A with totalSsjgn
of the form

T + 4
Pw(N—Z,S)COTCOUO)
+

Wherel/ngfz’ 5, is an arbitrary wavefunction o — 2 electrons with spirf, cg, =", i\,
creates an electron in the single-particle ground statePapdojects out states with doubly
occupied sites.

An eigenstate of level B is given by

o[o]o]---]0]

T ¢ i T T i i

e =2 resy 2ores, SONTDb 010 642) -+ Drioyeerm) Crmayt -+ - Sy 100

v

L (12)
[1]

Sr being the set of permutations ¢, . . ., k} (the first column) and,, the permutations of
{k+1, ..., k+m} (second column). Again this is only one representative member of a large

subspace of degenerate eigenstates. The others can in principle be calculated through the
repeated application of permutation operators, the spin-lowering opefatce S* — iS”

and linear combinations of them. Whether there is a more compact characterization of these
subspaces, as in case A, is an open question.

42.CandDili=L—-N+1

The diagrams witlhh = L — N + 1 appear with multiplicity 2 i S*| < (k—m —1)/2 and with
multiplicity 1 if |S¢| = (k — m + 1)/2. The diagonalization off, in ¢*’H leads therefore
to two levels with total spir§ = (k —m £+ 1)/2. ¢*H is spanned by the two symmetrized
wavefunctions:

o[t} 0
0

0
T

o
o

T T
0 1]

The odd combination of them
|W2) — |¥) = Z Z Sigr(n‘c)bi[(Z)r(k+2) : "bj-z(m)r(ker)

TeS, TES,

L
XC;lz(m+1)T = 'ij(kflm(brlr(k)r(k+1) + Z bJ‘[(k)v)|0>

v=k+m+1
with §? = (k —m — 1)/2 is easily seen to be an eigenstateS8fwith S = (k —m — 1)/2
because it is annulled by the raising operator= S*+iS”. Hence it has to be an eigenstate
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of H, as well. The states of this type give rise to part C of the spectrum with energies
Ec=—t(L—N/2—1-25).

The second eigenvector with= (k —m + 1) /2 must be orthogonal tp¥,) — |1) and
therefore is given by the sum

|W2) + [W1) = Z Z S'Qn(”f)bn(z)f(Hz) ﬂ(m)r(k+m)

TES, TES),

t t t
XCrmint -+ Cnk-11 <dn<k>n<1> +dl gorgrn + Z dn<k>v>|o)
v=k+m-+1

with dT = c Tci — cj.Tc,l. These states correspond to part D of the spectrum and the
energles arEp = —t(L—N/2+S).

4.3. The special case of one single hale£ L — 1)

For N = L — 1 figures 1 and 2 remain valid exept that level B now contains only the
ferromagnetic states with = N/2. To see this, note that the symmetrized states of level
B correspond to a Young diagram with= L — N. If only one hole is present, this means
that/ = 1 and thus the only remaining diagram i J1 This diagram corresponds to the
ferromagnetic state

Z( Dicyy...cly .. cl410).

The only degeneracy is in this case the trivial spin degenerdcy 2.

It follows that for N = L — 1 and a positive hopping parametefs > 0) the ground
state is ferromagnetic. This result is not surprising since it is a consequence of two well
known theorems, both confirming a unigque ferromagnetic ground state for this particular
case. The first is Tasaki's extension of Nagaoka’'s theorem [12] and the second is a theorem
proven by Mielke on flat band ferromagnetism [13, 14].

In this model, we find an example of Nagaoka ferromagnetism where the one-hole
condition is absolutely necessary, as we find always a complete spin degeneracy for
N <L-1.

4.4. Permutation symmetry and supersymmetry

At this point it is worthwhile to connect the present approach with that of Kirson [7],
who exploited the dynamical supersymmetry of the model. His classification of many-
electron states in Fock spageis based on the irreducible representatiansS] of a certain
superalgebra. The representation spaceYof] contains four possible pairs of quantum
numbers, namelyY, S), (Y +3,S—32), (¥ —1,S—3) and(Y, S— 1), whereY = L — iN
and S is the total spin. We can identify the representatlon spac# af][with e"‘]—‘ where
[a] = [1,2"1, 1k] is related toY andS by k =L —-Y +S, m=L—Y — S+ 1 and
l=—-L+2Y +1

For a givena there are (in general) four classes of symmetrized states in Fock space.
These correspond to parts A-D of the spectrum with differing numbers of parti¢lend
N £ 1), and can be identified with the four pairs of quantum number i§]f

As ¥ -35S-2 Be(¥+3.5-3 C& (Y,5-1) D& (Y, ).
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5. Ground states of the finiteU Hubbard model with infinite range hopping in the
case—t >0

The method developed in the previous sections can be generalized for other models which
are invariant under permutations of the lattice sites. For instance the Hubbard model with
infinite-range hopping,

Huupb = Ho + Hy
Hy = —t¢ Z cjacj(,

i,j,0
HU = Uann,-i
i

can in principle be treated in the same way. This model has been considered by several
autors [14, 15] but a general solution is still lacking. The most important new feature is
the appearance of doubly occupied sites. Proposition 3 has to be modified in a way so as
to treat these sites as well. The procedure is the following.

(i) Compute the admissible tableaux (the basis stateg) without double occupation
as explained in section 3 or appendix A.

(i) Replace a pairt, | of symbols byt, 0 and compute the symmetrized states with
exactly one double occupation. The new symbgl has to be included in the ordering
convention, e.g. &t<|<1].

(iii) Replace another two symbols, | by 1,0 and continue, until there is no pair
1, | left. In proposition 3, the symbol$| are treated like the holes, i.e. they must not be
repeated within the same column.

A model which includes doubly occupied sites is much more difficult to solve than the
model considered in this paper. Nevertheless there is a particular class of diagrams where
these complications do not matter.

Consider a diagram of the form (7) where the numbef boxes in the first row equals
L — N. In the tableaux of this kind, there is no way to produce a doubly occupied state
without violating the rules, because there is no room for an additional hole. The only
symmetrized states according to such a diagram are therefore the states B, eigenstates of
H,, which contain no double occupation. We conclude that every eigenstatebaflonging
to case B is at the same time an eigenstate of the Hubbard Hamiltonian with the unchanged
energyEg = 0.

Since in the case-t > 0 andU > 0 we find (y/|Hp|¥) > 0 and (y¥/|Hy|y¥) > 0 for
every statdy), the states B are even the (only) ground stategigfy,. It is remarkable
that the termH; splits the accidental degeneracy of level B, while this degeneracy remains
exact in the Hubbard model for every positive valuelaf This shows that the-J/ model
does not capture correctly the behaviour of the Hubbard model, not even in the asymptotic
regionU >> [t|. (In fact, a systematic larg€ expansion of the Hubbard model yields, in
addition to the exchange term, another contribution, the so-called pair-hopping term. See

e.g. [16].)

6. Conclusion

We have shown that the permutation symmetry ofrthe model with infinite-range hopping
allows us to derive explicitly the energy spectrum, the eigenfunctions and their quantum
numbers. The model is admittedly rather unphysical due to the complete lattice connectivity
which leads to unusually high level degeneracies. Nevertheless the many-body spectrum
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has a very rich structure, and therefore the model deserves to be added to the few non-trivial
cases of exactly solvable strongly correlated fermion systems. Our results for the spectrum
and the degeneracies agree with those derived on the basis of a dynamical supersymmetry
[7], but in addition we have also been able to obtain all the eigenstates. Furthermore, we
have found an exact correspondence between the two approaches.
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Appendix A. The Littlewood—Richardson rule and proof of proposition 3

Sometimes a representation of a groGpis completely determined by a representation
of a subgroup ofG. To formulate this properly, we refer to the concept of induced
representations.

Proposition A.1.Given a subgroupd of a finite groupG and a representation of H,
there always exists a representatiprof G into a vector spac& and a subrepresentation
& of p|y into a subspac& of V such thats is equivalent tos and

whereG/H is the set of left cosets of in G andW,, = p(s)W for an arbitrarys € y.

In this situation,p is (up to an equivalency) uniquely determineddynd is called the
induction ofo into G.

Let [«] be an irreducible representation $f and [8] an irreducible representation 8f,,
then the tensor product] ® [B] yields an irreducible representation §f x S,,. S, x Sy,
can be identified in a natural way with a subgroupSt,,, if S, acts on the elements
{1,2,...,n}ands,, actson{n+1,n+2,...,n+m}. The outer productd][ 8] is defined
as the induction ofd] ® [8] into S,+,, and is in general a reducible representatior$,af,, .
This multiplication is associative, commutative and obeys a distributive law together with
the direct sump.

The representatiop defined in equation (5) is an outer product:

p = [AI[L"][27].
To see this, consider one particular Fock state of the form (4). The subgroup of;
that leaveg¢) invariant (up to a sign) is isomorphic 1, x S, x S;. The one-dimensional
subspacéV of H generated byg) therefore carries the representatior= [1] ® [1*] ® [1¢]

of S, x S, x Sz < Si. All we have to verify is that the Hilbert space of the system (with
N and §¢ fixed) is the direct sum
H= &P p@)w
yESL/ShXSuxSa
wherer, € y is a representative member of the left coget
The Littlewood—Richardson rule describes a graphical way to generate the irreducible
constituents of an arbitrary produet][ 8], but for our purpose it is sufficient to consider a
product of the form ¢][1"].
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Proposition A.2.The diagrams 9f] of the irreducible constituents of«][1"] may be
calculated by adding boxes to the diagramy] in all possible ways such that no two
added boxes appear in the same row.

Example.If [«] = [3, 12] andn = 2 we obtain

[¢] [ [e] l [ ]

l
[o] 1
l

[ele] I

Thus
[3,17[1%] =[4. 2. 1]® [4. 1’1 @[3.2] @[3, 2, 1°] @[3, 1%].

We can apply this process repeatedly in order to obtain the constituents -of
[AI[1“]24].
For example, if we wish to calculate [3f[1?], we first evaluate [3][4]:

0]0]

oJoJoJ1]
1

0
11
[1]

This yields
[B][1%] = [4.1]&[3.17]
so that the constituents of [3f{l[12] are obtained as follows:

oJoJoJ1[2] oJoJo]1]2] oJoJoJ1] oJoJoJ1]
1[2 (1] 1[2 (1]
12] 12] 12
2]
of[oJo]2] oJoJo]2] oJo]o] oJo]o] oJoJo]
1[2 (1] 1[2 12 1]
[1] 1] 1]2 1] 1]
12] 12] 12
2]

Therefore
[BI[1%[1%] =[5, 2] ® [5. 13 ® 2[4, 2, 1] ® 2[4, 1) & [3, 22] & [3, 2, 1?] 3 [3, 17].

This algorithm leads to the same diagrams as proposition 3, if we replace the numbers
1, (2) by the symbolg, (|) respectively.

Proposition 3 describes how to obtain a basis of the subsg¥g@¢dor a given diagram
[¢]. The procedure described above shows only that proposition 3 leads to the correct
dimension ofe*H. However, we have also seen that this dimension is never higher than
two. Thus it is easy to verify in every case that the corresponding st&li@s are linearly
independent.
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Appendix B. Proof of (8)

We first note, thaEi<j p(ij) commutes with every (), 7 € S;. Thus

Yol = Ciplj)Re.

i<j i<j

ClearlyC*p(ij)R¥ = e* if (ij) € R* andC*p(ij)R* = —e® if (ij) € C*. In the remaining
case(ij) ¢ R* U C?, there exists one site # i, j, which is in the same column &@sand
in the same row ag.

As (ij) = (ik)(ij)(kj), we find

Cp(j)R" = C*p(ik)p(ij)p(kj)R* = —=C*p(ij)R”

and therefore

C*p(ij)R* =0.
This proves equation (8).
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